Deep learning is a subset of machine learning that focuses on utilizing multilayered neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from Neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data. The adjective "deep" refers to the use of multiple layers (ranging from three to several hundred or thousands) in the network. Methods used can be either supervised, semi-supervised or unsupervised.
Some common deep learning network architectures include fully connected networks, deep belief networks, recurrent neural networks, convolutional neural networks, generative adversarial networks, transformers, and neural radiance fields. These architectures have been applied to fields including computer vision, speech recognition, natural language processing, machine translation, bioinformatics, drug design, medical image analysis, Climatology, material inspection and board game programs, where they have produced results comparable to and in some cases surpassing human expert performance.
Early forms of neural networks were inspired by information processing and distributed communication nodes in biological systems, particularly the human brain. However, current neural networks do not intend to model the brain function of organisms, and are generally seen as low-quality models for that purpose.
Fundamentally, deep learning refers to a class of machine learning in which a hierarchy of layers is used to transform input data into a progressively more abstract and composite representation. For example, in an image recognition model, the raw input may be an image (represented as a tensor of ). The first representational layer may attempt to identify basic shapes such as lines and circles, the second layer may compose and encode arrangements of edges, the third layer may encode a nose and eyes, and the fourth layer may recognize that the image contains a face.
Importantly, a deep learning process can learn which features to optimally place at which level on its own. Prior to deep learning, machine learning techniques often involved hand-crafted feature engineering to transform the data into a more suitable representation for a classification algorithm to operate on. In the deep learning approach, features are not hand-crafted and the model discovers useful feature representations from the data automatically. This does not eliminate the need for hand-tuning; for example, varying numbers of layers and layer sizes can provide different degrees of abstraction.
The word "deep" in "deep learning" refers to the number of layers through which the data is transformed. More precisely, deep learning systems have a substantial credit assignment path (CAP) depth. The CAP is the chain of transformations from input to output. CAPs describe potentially causal connections between input and output. For a feedforward neural network, the depth of the CAPs is that of the network and is the number of hidden layers plus one (as the output layer is also parameterized). For recurrent neural networks, in which a signal may propagate through a layer more than once, the CAP depth is potentially unlimited. No universally agreed-upon threshold of depth divides shallow learning from deep learning, but most researchers agree that deep learning involves CAP depth higher than two. CAP of depth two has been shown to be a universal approximator in the sense that it can emulate any function. Beyond that, more layers do not add to the function approximator ability of the network. Deep models (CAP > two) are able to extract better features than shallow models and hence, extra layers help in learning the features effectively.
Deep learning architectures can be constructed with a greedy algorithm layer-by-layer method. Deep learning helps to disentangle these abstractions and pick out which features improve performance.
Deep learning algorithms can be applied to unsupervised learning tasks. This is an important benefit because unlabeled data is more abundant than the labeled data. Examples of deep structures that can be trained in an unsupervised manner are deep belief networks.
The term Deep Learning was introduced to the machine learning community by Rina Dechter in 1986,Rina Dechter (1986). Learning while searching in constraint-satisfaction problems. University of California, Computer Science Department, Cognitive Systems Laboratory. Online and to artificial neural networks by Igor Aizenberg and colleagues in 2000, in the context of Boolean network threshold neurons.Co-evolving recurrent neurons learn deep memory POMDPs. Proc. GECCO, Washington, D. C., pp. 1795–1802, ACM Press, New York, NY, USA, 2005. Although the history of its appearance is apparently more complicated.
The classic universal approximation theorem concerns the capacity of feedforward neural networks with a single hidden layer of finite size to approximate continuous functions. In 1989, the first proof was published by George Cybenko for sigmoid function activation functions and was generalised to feed-forward multi-layer architectures in 1991 by Kurt Hornik. Recent work also showed that universal approximation also holds for non-bounded activation functions such as Kunihiko Fukushima's rectified linear unit.
The universal approximation theorem for deep neural networks concerns the capacity of networks with bounded width but the depth is allowed to grow. Lu et al. proved that if the width of a deep neural network with ReLU activation is strictly larger than the input dimension, then the network can approximate any Lebesgue integrable function; if the width is smaller or equal to the input dimension, then a deep neural network is not a universal approximator.
The probabilistic interpretation derives from the field of machine learning. It features inference, as well as the optimization concepts of training and testing, related to fitting and generalization, respectively. More specifically, the probabilistic interpretation considers the activation nonlinearity as a cumulative distribution function. The probabilistic interpretation led to the introduction of dropout as regularizer in neural networks. The probabilistic interpretation was introduced by researchers including John Hopfield, Bernard Widrow and Narendra and popularized in surveys such as the one by Bishop.
Frank Rosenblatt (1958) proposed the perceptron, an MLP with 3 layers: an input layer, a hidden layer with randomized weights that did not learn, and an output layer. He later published a 1962 book that also introduced variants and computer experiments, including a version with four-layer perceptrons "with adaptive preterminal networks" where the last two layers have learned weights (here he credits H. D. Block and B. W. Knight). The book cites an earlier network by R. D. Joseph (1960) "functionally equivalent to a variation of" this four-layer system (the book mentions Joseph over 30 times). Should Joseph therefore be considered the originator of proper adaptive multilayer perceptrons with learning hidden units? Unfortunately, the learning algorithm was not a functional one, and fell into oblivion.
The first working deep learning algorithm was the Group method of data handling, a method to train arbitrarily deep neural networks, published by Alexey Ivakhnenko and Lapa in 1965. They regarded it as a form of polynomial regression,
The first deep learning multilayer perceptron trained by stochastic gradient descent was published in 1967 by Shun'ichi Amari. In computer experiments conducted by Amari's student Saito, a five layer MLP with two modifiable layers learned internal representations to classify non-linearily separable pattern classes. Subsequent developments in hardware and hyperparameter tunings have made end-to-end stochastic gradient descent the currently dominant training technique.
In 1969, Kunihiko Fukushima introduced the ReLU (rectified linear unit) activation function. The rectifier has become the most popular activation function for deep learning.
Deep learning architectures for convolutional neural networks (CNNs) with convolutional layers and downsampling layers began with the Neocognitron introduced by Kunihiko Fukushima in 1979, though not trained by backpropagation.
Backpropagation is an efficient application of the chain rule derived by Gottfried Wilhelm Leibniz in 1673
Recurrent neural networks (RNN) were further developed in the 1980s. Recurrence is used for sequence processing, and when a recurrent network is unrolled, it mathematically resembles a deep feedforward layer. Consequently, they have similar properties and issues, and their developments had mutual influences. In RNN, two early influential works were the Jordan network (1986) and the Elman network (1990), which applied RNN to study problems in cognitive psychology.
In the 1980s, backpropagation did not work well for deep learning with long credit assignment paths. To overcome this problem, in 1991, Jürgen Schmidhuber proposed a hierarchy of RNNs pre-trained one level at a time by self-supervised learning where each RNN tries to predict its own next input, which is the next unexpected input of the RNN below. This "neural history compressor" uses predictive coding to learn internal representations at multiple self-organizing time scales. This can substantially facilitate downstream deep learning. The RNN hierarchy can be collapsed into a single RNN, by distilling a higher level chunker network into a lower level automatizer network. In 1993, a neural history compressor solved a "Very Deep Learning" task that required more than 1000 subsequent layers in an RNN unfolded in time. Page 150 ff demonstrates credit assignment across the equivalent of 1,200 layers in an unfolded RNN. The "P" in ChatGPT refers to such pre-training.
Sepp Hochreiter's diploma thesis (1991)S. Hochreiter., " Untersuchungen zu dynamischen neuronalen Netzen". . Diploma thesis. Institut f. Informatik, Technische Univ. Munich. Advisor: J. Schmidhuber, 1991. implemented the neural history compressor, and identified and analyzed the vanishing gradient problem. Hochreiter proposed recurrent residual connections to solve the vanishing gradient problem. This led to the long short-term memory (LSTM), published in 1995. LSTM can learn "very deep learning" tasks with long credit assignment paths that require memories of events that happened thousands of discrete time steps before. That LSTM was not yet the modern architecture, which required a "forget gate", introduced in 1999,
In 1991, Jürgen Schmidhuber also published adversarial neural networks that contest with each other in the form of a zero-sum game, where one network's gain is the other network's loss. The first network is a generative model that models a probability distribution over output patterns. The second network learns by gradient descent to predict the reactions of the environment to these patterns. This was called "artificial curiosity". In 2014, this principle was used in generative adversarial networks (GANs).
During 1985–1995, inspired by statistical mechanics, several architectures and methods were developed by Terry Sejnowski, Peter Dayan, Geoffrey Hinton, etc., including the Boltzmann machine, restricted Boltzmann machine,
Both shallow and deep learning (e.g., recurrent nets) of ANNs for speech recognition have been explored for many years. These methods never outperformed non-uniform internal-handcrafting Gaussian mixture model/Hidden Markov model (GMM-HMM) technology based on generative models of speech trained discriminatively. Key difficulties have been analyzed, including gradient diminishing and weak temporal correlation structure in neural predictive models. Additional difficulties were the lack of training data and limited computing power.
Most speech recognition researchers moved away from neural nets to pursue generative modeling. An exception was at SRI International in the late 1990s. Funded by the US government's NSA and DARPA, SRI researched in speech and speaker recognition. The speaker recognition team led by Larry Heck reported significant success with deep neural networks in speech processing in the 1998 NIST Speaker Recognition benchmark. It was deployed in the Nuance Verifier, representing the first major industrial application of deep learning.L.P Heck and R. Teunen. "Secure and Convenient Transactions with Nuance Verifier". Nuance Users Conference, April 1998.
The principle of elevating "raw" features over hand-crafted optimization was first explored successfully in the architecture of deep autoencoder on the "raw" spectrogram or linear Filter bank features in the late 1990s, showing its superiority over the Mel-Cepstral features that contain stages of fixed transformation from spectrograms. The raw features of speech, , later produced excellent larger-scale results.
In 2003, LSTM became competitive with traditional speech recognizers on certain tasks. In 2006, Alex Graves, Santiago Fernández, Faustino Gomez, and Schmidhuber combined it with connectionist temporal classification (CTC) in stacks of LSTMs.Santiago Fernandez, Alex Graves, and Jürgen Schmidhuber (2007). An application of recurrent neural networks to discriminative keyword spotting . Proceedings of ICANN (2), pp. 220–229. In 2009, it became the first RNN to win a pattern recognition contest, in connected handwriting recognition.Graves, Alex; and Schmidhuber, Jürgen; Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks, in Bengio, Yoshua; Schuurmans, Dale; Lafferty, John; Williams, Chris K. I.; and Culotta, Aron (eds.), Advances in Neural Information Processing Systems 22 (NIPS'22), December 7th–10th, 2009, Vancouver, BC, Neural Information Processing Systems (NIPS) Foundation, 2009, pp. 545–552
In 2006, publications by Geoffrey Hinton, Ruslan Salakhutdinov, Osindero and Teh deep belief networks were developed for generative modeling. They are trained by training one restricted Boltzmann machine, then freezing it and training another one on top of the first one, and so on, then optionally fine-tuned using supervised backpropagation.G. E. Hinton., " Learning multiple layers of representation". . Trends in Cognitive Sciences, 11, pp. 428–434, 2007. They could model high-dimensional probability distributions, such as the distribution of MNIST database, but convergence was slow.
The impact of deep learning in industry began in the early 2000s, when CNNs already processed an estimated 10% to 20% of all the checks written in the US, according to Yann LeCun.Yann LeCun (2016). Slides on Deep Learning Online Industrial applications of deep learning to large-scale speech recognition started around 2010.
The 2009 NIPS Workshop on Deep Learning for Speech Recognition was motivated by the limitations of deep generative models of speech, and the possibility that given more capable hardware and large-scale data sets that deep neural nets might become practical. It was believed that pre-training DNNs using generative models of deep belief nets (DBN) would overcome the main difficulties of neural nets. However, it was discovered that replacing pre-training with large amounts of training data for straightforward backpropagation when using DNNs with large, context-dependent output layers produced error rates dramatically lower than then-state-of-the-art Gaussian mixture model (GMM)/Hidden Markov Model (HMM) and also than more-advanced generative model-based systems. The nature of the recognition errors produced by the two types of systems was characteristically different, offering technical insights into how to integrate deep learning into the existing highly efficient, run-time speech decoding system deployed by all major speech recognition systems.
Although CNNs trained by backpropagation had been around for decades and GPU implementations of NNs for years, including CNNs, faster implementations of CNNs on GPUs were needed to progress on computer vision. Later, as deep learning becomes widespread, specialized hardware and algorithm optimizations were developed specifically for deep learning.
A key advance for the deep learning revolution was hardware advances, especially GPU. Some early work dated back to 2004. In 2009, Raina, Madhavan, and Andrew Ng reported a 100M deep belief network trained on 30 Nvidia GeForce GTX 280 GPUs, an early demonstration of GPU-based deep learning. They reported up to 70 times faster training.
In 2011, a CNN named DanNet by Dan Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and Jürgen Schmidhuber achieved for the first time superhuman performance in a visual pattern recognition contest, outperforming traditional methods by a factor of 3. It then won more contests.
In 2012, Andrew Ng and Jeff Dean created an FNN that learned to recognize higher-level concepts, such as cats, only from watching unlabeled images taken from YouTube videos.
In October 2012, AlexNet by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton won the large-scale ImageNet competition by a significant margin over shallow machine learning methods. Further incremental improvements included the VGG-16 network by Karen Simonyan and Andrew Zisserman and Google's Inceptionv3.
The success in image classification was then extended to the more challenging task of generating descriptions (captions) for images, often as a combination of CNNs and LSTMs....
In 2014, the state of the art was training “very deep neural network” with 20 to 30 layers. Stacking too many layers led to a steep reduction in training accuracy, known as the "degradation" problem. In 2015, two techniques were developed to train very deep networks: the Highway Network was published in May 2015, and the residual neural network (ResNet) in Dec 2015. ResNet behaves like an open-gated Highway Net.
Around the same time, deep learning started impacting the field of art. Early examples included DeepDream (2015), and neural style transfer (2015), both of which were based on pretrained image classification neural networks, such as VGG-19.
Generative adversarial network (GAN) by (Ian Goodfellow et al., 2014) (based on Jürgen Schmidhuber's principle of artificial curiosity)
became state of the art in generative modeling during 2014-2018 period. Excellent image quality is achieved by Nvidia's StyleGAN (2018) based on the Progressive GAN by Tero Karras et al. Here the GAN generator is grown from small to large scale in a pyramidal fashion. Image generation by GAN reached popular success, and provoked discussions concerning . (2015) eclipsed GANs in generative modeling since then, with systems such as DALL-E (2022) and Stable Diffusion (2022).
In 2015, Google's speech recognition improved by 49% by an LSTM-based model, which they made available through Google Voice Search on smartphone.Google Research Blog. The neural networks behind Google Voice transcription. August 11, 2015. By Françoise Beaufays http://googleresearch.blogspot.co.at/2015/08/the-neural-networks-behind-google-voice.html
Deep learning is part of state-of-the-art systems in various disciplines, particularly computer vision and automatic speech recognition (ASR). Results on commonly used evaluation sets such as TIMIT (ASR) and MNIST database (image classification), as well as a range of large-vocabulary speech recognition tasks have steadily improved.
Yoshua Bengio, Geoffrey Hinton and Yann LeCun were awarded the 2018 Turing Award for "conceptual and engineering breakthroughs that have made deep neural networks a critical component of computing".
An ANN is based on a collection of connected units called artificial neurons, (analogous to biological in a Brain). Each connection (synapse) between neurons can transmit a signal to another neuron. The receiving (postsynaptic) neuron can process the signal(s) and then signal downstream neurons connected to it. Neurons may have state, generally represented by real numbers, typically between 0 and 1. Neurons and synapses may also have a weight that varies as learning proceeds, which can increase or decrease the strength of the signal that it sends downstream.
Typically, neurons are organized in layers. Different layers may perform different kinds of transformations on their inputs. Signals travel from the first (input), to the last (output) layer, possibly after traversing the layers multiple times.
The original goal of the neural network approach was to solve problems in the same way that a human brain would. Over time, attention focused on matching specific mental abilities, leading to deviations from biology such as backpropagation, or passing information in the reverse direction and adjusting the network to reflect that information.
Neural networks have been used on a variety of tasks, including computer vision, speech recognition, machine translation, social network filtering, playing board and video games and medical diagnosis.
As of 2017, neural networks typically have a few thousand to a few million units and millions of connections. Despite this number being several order of magnitude less than the number of neurons on a human brain, these networks can perform many tasks at a level beyond that of humans (e.g., recognizing faces, or playing "Go").
For example, a DNN that is trained to recognize dog breeds will go over the given image and calculate the probability that the dog in the image is a certain breed. The user can review the results and select which probabilities the network should display (above a certain threshold, etc.) and return the proposed label. Each mathematical manipulation as such is considered a layer, and complex DNN have many layers, hence the name "deep" networks.
DNNs can model complex non-linear relationships. DNN architectures generate compositional models where the object is expressed as a layered composition of primitives. The extra layers enable composition of features from lower layers, potentially modeling complex data with fewer units than a similarly performing shallow network. For instance, it was proved that sparse multivariate polynomials are exponentially easier to approximate with DNNs than with shallow networks.
Deep architectures include many variants of a few basic approaches. Each architecture has found success in specific domains. It is not always possible to compare the performance of multiple architectures, unless they have been evaluated on the same data sets.
DNNs are typically feedforward networks in which data flows from the input layer to the output layer without looping back. At first, the DNN creates a map of virtual neurons and assigns random numerical values, or "weights", to connections between them. The weights and inputs are multiplied and return an output between 0 and 1. If the network did not accurately recognize a particular pattern, an algorithm would adjust the weights. That way the algorithm can make certain parameters more influential, until it determines the correct mathematical manipulation to fully process the data.
Recurrent neural networks, in which data can flow in any direction, are used for applications such as . Long short-term memory is particularly effective for this use.
Convolutional neural networks (CNNs) are used in computer vision. CNNs also have been applied to for automatic speech recognition (ASR).
DNNs are prone to overfitting because of the added layers of abstraction, which allow them to model rare dependencies in the training data. Regularization methods such as Ivakhnenko's unit pruning or weight decay (-regularization) or sparse matrix (-regularization) can be applied during training to combat overfitting.
DNNs must consider many training parameters, such as the size (number of layers and number of units per layer), the learning rate, and initial weights. Sweeping through the parameter space for optimal parameters may not be feasible due to the cost in time and computational resources. Various tricks, such as Batch learning (computing the gradient on several training examples at once rather than individual examples) speed up computation. Large processing capabilities of many-core architectures (such as GPUs or the Intel Xeon Phi) have produced significant speedups in training, because of the suitability of such processing architectures for the matrix and vector computations.
Alternatively, engineers may look for other types of neural networks with more straightforward and convergent training algorithms. CMAC (cerebellar model articulation controller) is one such kind of neural network. It doesn't require learning rates or randomized initial weights. The training process can be guaranteed to converge in one step with a new batch of data, and the computational complexity of the training algorithm is linear with respect to the number of neurons involved.Ting Qin, et al. "A learning algorithm of CMAC based on RLS". Neural Processing Letters 19.1 (2004): 49-61.Ting Qin, et al. " Continuous CMAC-QRLS and its systolic array". . Neural Processing Letters 22.1 (2005): 1-16.
Special electronic circuits called deep learning processors were designed to speed up deep learning algorithms. Deep learning processors include neural processing units (NPUs) in Huawei cellphones and cloud computing servers such as tensor processing units (TPU) in the Google Cloud Platform. Cerebras has also built a dedicated system to handle large deep learning models, the CS-2, based on the largest processor in the industry, the second-generation Wafer Scale Engine (WSE-2).
Atomically thin semiconductors are considered promising for energy-efficient deep learning hardware where the same basic device structure is used for both logic operations and data storage.
In 2020, Marega et al. published experiments with a large-area active channel material for developing logic-in-memory devices and circuits based on floating-gate field-effect transistors (FGFETs).
In 2021, J. Feldmann et al. proposed an integrated photonic hardware accelerator for parallel convolutional processing. The authors identify two key advantages of integrated photonics over its electronic counterparts: (1) massively parallel data transfer through wavelength division multiplexing in conjunction with , and (2) extremely high data modulation speeds. Their system can execute trillions of multiply-accumulate operations per second, indicating the potential of integrated photonics in data-heavy AI applications.
The initial success in speech recognition was based on small-scale recognition tasks based on TIMIT. The data set contains 630 speakers from eight major of American English, where each speaker reads 10 sentences. Its small size lets many configurations be tried. More importantly, the TIMIT task concerns phone-sequence recognition, which, unlike word-sequence recognition, allows weak phone bigram language models. This lets the strength of the acoustic modeling aspects of speech recognition be more easily analyzed. The error rates listed below, including these early results and measured as percent phone error rates (PER), have been summarized since 1991.
The debut of DNNs for speaker recognition in the late 1990s and speech recognition around 2009-2011 and of LSTM around 2003–2007, accelerated progress in eight major areas:
All major commercial speech recognition systems (e.g., Microsoft Cortana, Xbox, Skype Translator, Amazon Alexa, Google Now, Siri, Baidu and IFlytek voice search, and a range of Nuance speech products, etc.) are based on deep learning.
Deep learning-based image recognition has become "superhuman", producing more accurate results than human contestants. This first occurred in 2011 in recognition of traffic signs, and in 2014, with recognition of human faces.
Deep learning-trained vehicles now interpret 360° camera views. Nvidia Demos a Car Computer Trained with "Deep Learning" (6 January 2015), David Talbot, MIT Technology Review Another example is Facial Dysmorphology Novel Analysis (FDNA) used to analyze cases of human malformation connected to a large database of genetic syndromes.
Other key techniques in this field are negative sampling and word embedding. Word embedding, such as word2vec, can be thought of as a representational layer in a deep learning architecture that transforms an atomic word into a positional representation of the word relative to other words in the dataset; the position is represented as a point in a vector space. Using word embedding as an RNN input layer allows the network to parse sentences and phrases using an effective compositional vector grammar. A compositional vector grammar can be thought of as probabilistic context free grammar (PCFG) implemented by an RNN. Recursive auto-encoders built atop word embeddings can assess sentence similarity and detect paraphrasing. Deep neural architectures provide the best results for constituency parsing, sentiment analysis, information retrieval, spoken language understanding, machine translation, contextual entity linking, writing style recognition, named-entity recognition (token classification), text classification, and others.
Recent developments generalize word embedding to sentence embedding.
Google Translate (GT) uses a large end-to-end long short-term memory (LSTM) network. Google Neural Machine Translation (GNMT) uses an example-based machine translation method in which the system "learns from millions of examples". It translates "whole sentences at a time, rather than pieces". Google Translate supports over one hundred languages. The network encodes the "semantics of the sentence rather than simply memorizing phrase-to-phrase translations". GT uses English as an intermediate between most language pairs.
AtomNet is a deep learning system for structure-based Drug design. AtomNet was used to predict novel candidate biomolecules for disease targets such as the Ebola virus and multiple sclerosis.
In 2017 graph neural networks were used for the first time to predict various properties of molecules in a large toxicology data set. In 2019, generative neural networks were used to produce molecules that were validated experimentally all the way into mice.
In medical informatics, deep learning was used to predict sleep quality based on data from wearables and predictions of health complications from electronic health record data.
Deep neural networks have shown unparalleled performance in predicting protein structure, according to the sequence of the amino acids that make it up. In 2020, AlphaFold, a deep-learning based system, achieved a level of accuracy significantly higher than all previous computational methods.
In addition, the integration of Physics-informed neural networks (PINNs) into the deep BSDE framework enhances its capability by embedding the underlying physical laws directly into the neural network architecture. This ensures that the solutions not only fit the data but also adhere to the governing stochastic differential equations. PINNs leverage the power of deep learning while respecting the constraints imposed by the physical models, resulting in more accurate and reliable solutions for financial mathematics problems.
A variety of approaches have been used to investigate the plausibility of deep learning models from a neurobiological perspective. On the one hand, several variants of the backpropagation algorithm have been proposed in order to increase its processing realism. Other researchers have argued that unsupervised forms of deep learning, such as those based on hierarchical and deep belief networks, may be closer to biological reality. In this respect, generative neural network models have been related to neurobiological evidence about sampling-based processing in the cerebral cortex.
Although a systematic comparison between the human brain organization and the neuronal encoding in deep networks has not yet been established, several analogies have been reported. For example, the computations performed by deep learning units could be similar to those of actual neurons and neural populations. Similarly, the representations developed by deep learning models are similar to those measured in the primate visual system both at the single-unit and at the population levels.
Google's DeepMind Technologies developed a system capable of learning how to play Atari video games using only pixels as data input. In 2015 they demonstrated their AlphaGo system, which learned the game of Go well enough to beat a professional Go player. Google Translate uses a neural network to translate between more than 100 languages.
In 2017, Covariant.ai was launched, which focuses on integrating deep learning into factories.
As of 2008,
In further reference to the idea that artistic sensitivity might be inherent in relatively low levels of the cognitive hierarchy, a published series of graphic representations of the internal states of deep (20-30 layers) neural networks attempting to discern within essentially random data the images on which they were trained demonstrate a visual appeal: the original research notice received well over 1,000 comments, and was the subject of what was for a time the most frequently accessed article on The Guardian's website.
In 2016 researchers used one ANN to doctor images in trial and error fashion, identify another's focal points, and thereby generate images that deceived it. The modified images looked no different to human eyes. Another group showed that printouts of doctored images then photographed successfully tricked an image classification system. One defense is reverse image search, in which a possible fake image is submitted to a site such as TinEye that can then find other instances of it. A refinement is to search using only parts of the image, to identify images from which that piece may have been taken .
Another group showed that certain Psychedelic art spectacles could fool a facial recognition system into thinking ordinary people were celebrities, potentially allowing one person to impersonate another. In 2017 researchers added stickers to and caused an ANN to misclassify them.
ANNs can however be further trained to detect attempts at deception, potentially leading attackers and defenders into an arms race similar to the kind that already defines the malware defense industry. ANNs have been trained to defeat ANN-based anti-malware software by repeatedly attacking a defense with malware that was continually altered by a genetic algorithm until it tricked the anti-malware while retaining its ability to damage the target.
In 2016, another group demonstrated that certain sounds could make the Google Now voice command system open a particular web address, and hypothesized that this could "serve as a stepping stone for further attacks (e.g., opening a web page hosting drive-by malware)".
In "data poisoning", false data is continually smuggled into a machine learning system's training set to prevent it from achieving mastery.
History
Before 1980
1980s-2000s
2000s
Deep learning revolution
Neural networks
Deep neural networks
Challenges
Hardware
Applications
Automatic speech recognition
26.1 25.6 24.8 23.4 22.4 21.7 20.7 20.0 18.7 18.3 17.8 16.5
Image recognition
Visual art processing
Natural language processing
Drug discovery and toxicology
Customer relationship management
Recommendation systems
Bioinformatics
Deep Neural Network Estimations
Medical image analysis
Mobile advertising
Image restoration
Financial fraud detection
Materials science
Military
Partial differential equations
Deep backward stochastic differential equation method
Image reconstruction
Weather prediction
Epigenetic clock
Relation to human cognitive and brain development
Commercial activity
Criticism and comment
Theory
Errors
Cyber threat
Data collection ethics
See also
Further reading
|
|